The impact of user impatience on
Internet performance

Bert Zwart

February 16, 20006

Joint work with Christian Gromoll (Stanford) and Philippe Robert (INRIA).

To appear in ACM Sigmetrics, 2000.

“«<Ar» 1/43

Impatience causes significant overhead

° l//

e Networks are often very congested = users receive poor service.

e Feldmann et al. (1999): 11 % of Internet data transfers are aborted prior
to completion; these transfers correspond to 20 % of the total traffic.

“«<Ar» 2/43

Main questions addressed in this talk

Router

Depaﬂm ent LAN

3509

e What is the fraction of users that terminate their job before completion?

e How much bandwidth is wasted on such users?

e How can we limit the impact of impatience?

<« <A>» 3/43

Overview of this talk

e Modeling impatience in bandwidth sharing networks.
e Performance Analysis.

e A remedy: Admission control.

e Reattempts.

e Summary.

e Related problems.

<« <A>» 4/43

Modeling a bottleneck link in a bandwidth network

e Bandwidth sharing networks often use a variant of the TCP protocol.

e Crucial property of TCP: If n identical users share the network for a long
time, they eventually receive the same service rate.

e Processor sharing (PS) is a service mechanism where the server serves
all customers at equal speed.

- | l -
——

<« <A>» 5/43

PS is a flow-level model for TCP

e Example: if there are 5 customers in the system, then each customer is
served with rate 1/5. When an extra customer enters, all customers will
be immediately served with rate 1/6.

e Unlike TCP, PS adapts the long-term service rate immediately to the
new situation. Therefore, PS is an idealized version of TCP.

[1
~ . . @ .
| — |

From now on, we approximate TCP with PS.

«<air» 6/43

Challenge I: Traffic is bursty

Packets/Time Unit Packets/Time Unit Packets/Time Unit Packets/Time Unit

Packets/Time Unit

Measured Data Traffic (Ethernet LAN)

60000
40000
20000
0
J 100 200 300 400 500 600 700 800 900 1000
Time Unit = 100 Seconds
6000
4000
2000
0

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 10 Seconds

800
600
400
200
o —_—

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 1 Second

100
80
60
40
20
o —_—]

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 0.1 Second

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 0.01 Second

Packets/Time Unit Packets/Time Unit Packets/Time Unit Packets/Time Unit

Packets/Time Unit

Traditional Models for Data Traffic

40000
20000

60000 l
0

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 100 Seconds

4000

6000
2000 l

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 10 Seconds

800
600
400

o

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 1 Second

100
80
60
40
20
o —_—

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 0.1 Second

0 100 200 300 400 500 600 700 800 900 1000

Time Unit = 0.01 Second

traffic
conven-

e LAN traffic vs.
generated by
tional model.

e Traffic is bursty at wide
range of time scales
(from 10 milliseconds to
100 seconds).

e Explanation and well-
established fact: File
sizes have infinite
variance.

<4 A D> >

7/43

Challenge II: Huge gap in queueing literature

e The literature on FIFO queues with impatience is extensive, motivated
by call center applications.

e There is hardly any literature on PS queues with impatience. Exceptions
are Coffman et al. (1994) and Bonald & Roberts (2003).

e The reason is obvious. We encountered an exciting combination of three
complicated features:

— The system lacks memoryless properties.
— The system is not work-conserving due to impatience.

— Time-sharing allows customers to overtake: desirable, but intricate!

«<ir» 8/43

Processor sharing with impatience: the setup

e Users arrive at the system according to a renewal process with rate .

e Service requirements have a general distribution, which may have infi-
nite variance.

e Each user has a lead time, which may be dependent on his service time.
e A user leaves due to impatience when his lead time expires.

e No upper bound on number of users simultaneously in the system.

<« <A>» 9/43

Describing the model as a particle system

A

Remaining

lead time /.

7 S
N

Remaining service requirement

Snapshot of the system with 5 users. "Particles" move to the left with rate
1/5 and downwards with rate 1.

“«<Ar» 10/43

Reducing model complexity by fluid scaling

e Z(t): number of customers at time ¢.
e Z(t),t > 0 is a complicated non-Markov process.

e Therefore, we consider a fluid scaling. Informally, we scale time and
space by a factor r, and replace the lead times D, by rD;,.

e Interpretation: Server works at rate r, and customers arrive at rate \r.

<« <A>» 11/43

Main convergence results

Assume that the system is overloaded: p = AE[B] > 1.

Theorem 1 (approximation of time-dependent behavior)
There exists a continuous function z(-) such that 1 Z(rt) — z(t).

Theorem 2 (approximation of steady-state behavior)
If p > 1 and also

AE[Blip_ot] <1, Emin{B,D}| < oo,

then z(t) — z ast — oo, with 2 the positive solution of the equation

z = AE[min{zB, D}|.

<« <A>» 12/43

Number of customers at time ¢

The process z(-) approximates the number of customers in the system.

t
2(t) = 20P[By > S(0,t), Dy > t] +)\/ P[B > S(s,t),D >t — s|ds,
0

S(s,t) = / t ﬁdu.

e S(s,t) is the total service rate between time s and time t.

with

e 2)P[By > S(0,t), Dy > t]: total "mass" at time 0 which is still in the
system at time ¢.

e PIB > S(s,t),D >t — s|: fraction of mass arrived at time s which is
still in system at time .

<« <A>» 13/43

Modeling impatience in TCP: Summary

e We approximated TCP by an idealized version: PS.

e PS with impatience is still too complicated to analyze.

e A fluid approximation reduced the random process to a fluid model.

e Steady-state is approximated by the simple fixed-point equation

z = AEmin{zB, D}|.

<« <A>» 14/43

Overview

e Modeling impatience in TCP networks.
e Performance Analysis.

e A remedy: Admission control.

e Reattempts.

e Summary.

e Related problems.

<« <A>» 15/43

Interpretation of the fixed point equation

Let Z" be the steady-state number of users.

Let V" be the steady-state sojourn time of a user.

V" = min{V],rD} with V" the potential sojourn time (if the customer
would not be impatient).

Little’s law:

E[Z'] = AE[V"] = AE[min{V", Dr}].

What is VpTP

<« <A>» 16/43 ‘

Combining Little’s law and the snapshot principle

If the number of customers in the system is approximately constant during
a customer’s sojourn time as 7 becomes large, then

V' = (2" + o(r))B.

This is called the snapshot principle: in equilibrium, a customer does not
observe any fluctuations of the system during his sojourn.

Combined with Little’s law, this gives:
E[Z"] = AEmin{(Z" + o(r))B, rD}]|.
Divide both sides by r and let 7 — oo to get

z = AE[min{zB, D}|.

<« <A>» 17/43

Performance measures

e Number of users in the system: rz, with

z = AEmin{zB, D}|.

e Fraction of users that do not renege: P, = P[zB < D|.

e Server utilization: p, = A\E[B; 2B < D).

e Time-dependent reneging rate d(t).

«“«<Ar» 18/43

Will it help to make customers more patient?

e Suppose that customers become twice as patient.

e How much will the fraction of successful customers P, increase?

Answer: P, will not increase at all!

Lesson: If the system is overloaded, the average lead-time is not important.

<« <A>» 19/43

Making customers more patient helps temporarily

Time-dependent behavior of the reneging rate d(t) for a system which is in
equilibrium at time 0 and in which customers arriving after time 0 are twice
as patient as before time 0. A =2, u =1,y =2,v; = 1)

0.25

0.15

0.1
0.05

“«<Ar» 20/43

Ps new = Ps o4 — proof is quite simple

Zoa = AEmin{z,4B, D}].
22,0 = AEmin{2z,4B,2D}|.
Znew = AE[min{z,,., B, 2D}|.
= Znew = 2Zo1d
P, rew = PlzuewB < 2D]
P[22,4B < 2D]

P[ZoldB < D]
— Ps,old-

<« < AD> >

21/43

Example 1: Linearly dependent lead times

Take D = OB, with © and B independent.
O reflects the average service level expected by a customer.

If © is a constant 6 (say), then
z = pmin{0, z}.
implying that z = p6.
Consequently:
P,=P[D > z2B]=P[0 > z| = P[0 > pb] = 0.

All users in the system will be impatient!!

<« <A>» 22/43

Here is an illuminating picture

Remaining
lead time

Remaining service requirement

All mass initially "lands" on the slope y = 6x and moves towards the south-
west with direction (1,1/(0p)).

<« <A>» 23/43

How the system is crashing

e If the system starts empty, there is initially no impatience.

e When z(t) reaches 1/0, there is a sharp phase-transition: Suddenly, ev-
erybody becomes impatient.

e Holds for all service-time distributions!

0.8

0.6

0.4

0.2

<« <A>» 24/43

The impact of variability

Other extreme: Users are either extremely patient or extremely impatient.

© = € with probability p and © = M with probability 1 — p. In that case,
the server utilization p, can be as close to 1 as desired.

More variability in lead times has a positive effect on system performance.

In particular: more variability implies a higher service rate:
Compare two systems with identical A\, B but with different ©; and O,.

1cx

Proposition. If ©; > O,, then 2; < z,.

<« <A>» 25/43

Example II: Independent lead times

e We now assume that 5 and D are independent.

e We compare limiting values under different assumptions on the distri-
butions.

e In all cases, p = 1.5, E[B] = E[D] = 2 and B and D either have an
exponential distribution or a Pareto distribution with tail (1 + x)~*.

B exp B par
Dexp|z=0.5000|z=0.1174
D par | z = 0.2067 | z = 0.0505

More variability is always good!

«“«<Ar» 26/43

Getting the time-dependent solution is possible

If D has an exponential with rate v and z(0) = 0, then

“(t) = A /0 PR > / t ﬁdu]ds.

The solution is remarkably simple:

2(t) = (1 — ez,

In general, one can obtain z(t) numerically by Picard-iteration.

<« <A>» 27/43

Performance analysis: summary

e Making customers more patient does not affect system performance in
the long run.

e More variability leads to better system performance.

e Positive dependence between service times and lead times negatively af-
fects system performance.

e Scenarios are possible in which almost all customers renege: The impact
of reneging can be substantial.

«“«<Ar» 28/43

Overview

e Modeling impatience in TCP networks.
e Performance Analysis.

o A remedy: Admission control.

e Reattempts.

e Summary.

e Related problems.

<« <A>» 29/43

Controlling the impact of impatience

v
Y
== :'/:‘_\j ==

=T

e To reduce the impact of impatience, one could perform admission con-
trol, i.e. bound the total number of customers in the system by some
constant K.

e Trade off: customers may be blocked, but admitted customers are served
at a higher rate, reducing the probability of reneging.

e [s it possible to improve system performance by admission control?

“«<Ar»r» 30/43

Admission control: Analysis

e Let g be fraction of customers that are admitted to the system.
e By Little’s law, zx = AqxE[min{zx B, D}|.

e Observe that g = 1if 2z < K. Consequently, z = min{z, K }, with
2 the solution of the equation z = AE|min{zB, D}|.

o If 2 = K, then gx can be solved from the above equation for zx.

<« <A>» 31/43

Maximizing server utilization

e The fraction of successful customers is given by Vi = qxP[2x B < D|.

e It can be shown that Vi — 1/pif K | 0 (small buffer). If the buffer is
small, there is almost no reneging.

e This implies that the server utilization converges to 1 as K | 0.

e Hence, it makes sense to keep a small buffer in order to maximize the
server utilization.

<« <A>» 32/43

Maximizing user satisfaction

Things are not so clear when one aims to maximize the fraction of successful
customers:

e When D = OB, Vi is optimized by letting K become small.

e When D is constant and P[B > z] = (=%
performing no admission control at all (K

) then Vi is maximized by

00).

Conclusion: Admission control increases the server utilization and some-
times also the fraction of successful transmissions.

<« <A>» 33/43

Overview

e Modeling impatience in TCP networks.
e Performance Analysis.

e A remedy: Admission control.

e Reattempts.

e Summary.

e Related problems.

<« <A>» 34/43

Extending the model to Reattempts

Typical user behavior: Impatient users of the Internet tend to click first on
STOP and after that, immediately on REFRESH.

Assume that a customer, after having left the system due to impatience,
retries immediately with probability p € (0, 1).

L 1

@
L 1
L 1

@
L 1

<« <A>» 35/43

Reattempts cause bi-stability!

e The fixed-point equation becomes

» = AE[min{>B, D}] + %AP[ZB > DIE[D | D < 2B).
- P

e Can have strictly positive solution, even if p < 1.

e Intuition: the system is bi-stable. For large, but finite r, the system can
experience long periods during which there is a substantial reneging
rate.

«<air» 36/43

Summary and Conclusions

e The impact of impatience in overload can be substantial.
e More variability leads to better system performance.

e If the system is not overloaded, reattempting customers can have a sig-
nificant impact.

e The impact of impatience can often be reduced by a simple admission
control rule.

<« <A>» 37/43

Overview

e Modeling impatience in TCP networks.
e Performance Analysis.

e A remedy: Admission control.

e Reattempts.

e Summary.

e Related problems:

1. Impact of scheduling on long sojourn times.

2. Bandwidth sharing with heterogeneous flow sizes.

«<ir» 38/43

Impact of scheduling on long sojourn times

e Consider a system where several users share a common server.
e Service requirements are heavy-tailed: P[B > z| ~ ™.

e Which scheduling should one use? FIFO, or something more sophisti-
cated?

e Usually, one compares average sojourn times.

e My research has focused on the impact of scheduling on long sojourn times

<« <A>» 39/43

If you stay in the system for a long time...

... it’s your own fault:

Zwart (ITC 1999), Zwart & Boxma (Questa 2000):
PV >z|=P|B > x(1—p)|(1+0(1)).

load

bandwidth dedicated to other users

(@) X

For FIFO: Long sojourn times are much more likely, and are caused other
by another customer: NOT FAIR!

“«<Ar» 40/43

Bandwidth sharing with heterogeneous flow sizes

2

—
——

e Two classes of users share a link, all users receive the same service rate.
e Class 1is well behaved: exponentially distributed service requirements.

e Class 2 is behaving badly: Heavy-tailed (Pareto) service requirements.

Question: Is class 1 well-protected from class 2?

“«<Ar» 41/43

Quality of Service for well-behaved users?

QoS for class 1 users: Large sojourn times should not happen too often.
It would be helpful if P[V; > x| = 777,
This would the case if class 2 is not present.

Borst/Nunez/Zwart (ITC2003): 30 > 0:
PV, > z] > eV,

Users of class 2 have negative impact on QoS of class 1, so class 1 is NOT
well-protected!

“«<Ar» 4243

Solution: Admission control!

AW
& %

’
| SN NP
A .Ili" A

el T

Upper bound the total number of users by N < oo.
Then P[V; > z] has an exponential tail!

Important reason: In the system with blocking, there is a minimum guar-
anteed service rate: 1/IV, so

Sojourn time < N X service time.

<« <A>» 43/43

